mastodon.uno è uno dei tanti server Mastodon indipendenti che puoi usare per partecipare al fediverso.
Mastodon.Uno è la principale comunità mastodon italiana. Con 77.000 iscritti è il più grande nodo Mastodon italiano: anima ambientalista a supporto della privacy e del mondo Open Source.

Statistiche del server:

6,4K
utenti attivi

francal

Un team di ricercatori dell'Università cinese di Tsinghua ha sviluppato un modello di linguaggio di grandi dimensioni **capace di generare testi fino a 10.000 parole**.
Finora, **la maggior parte degli LLM era limitata a una produzione di circa 2.000 parole**.
Il team cinese ha superato questa barriera modificando l'architettura dell' e **addestrandolo su un nuovo dataset contenente 6.000 documenti con lunghezze variabili da 2.000 a 32.000 parole**.
arxiv.org/abs/2408.07055
@aitech

arXiv.orgLongWriter: Unleashing 10,000+ Word Generation from Long Context LLMsCurrent long context large language models (LLMs) can process inputs up to 100,000 tokens, yet struggle to generate outputs exceeding even a modest length of 2,000 words. Through controlled experiments, we find that the model's effective generation length is inherently bounded by the sample it has seen during supervised fine-tuning (SFT). In other words, their output limitation is due to the scarcity of long-output examples in existing SFT datasets. To address this, we introduce AgentWrite, an agent-based pipeline that decomposes ultra-long generation tasks into subtasks, enabling off-the-shelf LLMs to generate coherent outputs exceeding 20,000 words. Leveraging AgentWrite, we construct LongWriter-6k, a dataset containing 6,000 SFT data with output lengths ranging from 2k to 32k words. By incorporating this dataset into model training, we successfully scale the output length of existing models to over 10,000 words while maintaining output quality. We also develop LongBench-Write, a comprehensive benchmark for evaluating ultra-long generation capabilities. Our 9B parameter model, further improved through DPO, achieves state-of-the-art performance on this benchmark, surpassing even much larger proprietary models. In general, our work demonstrates that existing long context LLM already possesses the potential for a larger output window--all you need is data with extended output during model alignment to unlock this capability. Our code & models are at: https://github.com/THUDM/LongWriter.