mastodon.uno è uno dei tanti server Mastodon indipendenti che puoi usare per partecipare al fediverso.
Mastodon.Uno è la principale comunità mastodon italiana. Con 77.000 iscritti è il più grande nodo Mastodon italiano: anima ambientalista a supporto della privacy e del mondo Open Source.

Statistiche del server:

6,4K
utenti attivi

#iceformation

1 post1 partecipante0 post oggi
SannaThe weather has been going back and forth between spring and winter all week, but slowly it starts to smell like spring! Also lake has started to melt and the shore has these fun ice plates.<br> <br> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#photography</a> <a href="https://pixelfed.social/discover/tags/spring?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#spring</a> <a href="https://pixelfed.social/discover/tags/winter?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#winter</a> <a href="https://pixelfed.social/discover/tags/finnishspring?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#finnishspring</a> <a href="https://pixelfed.social/discover/tags/sunset?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#sunset</a> <a href="https://pixelfed.social/discover/tags/nature?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#nature</a> <a href="https://pixelfed.social/discover/tags/naturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#naturephotography</a> <a href="https://pixelfed.social/discover/tags/lakeview?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#lakeview</a> <a href="https://pixelfed.social/discover/tags/ice?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#ice</a> <a href="https://pixelfed.social/discover/tags/iceplates?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#iceplates</a> <a href="https://pixelfed.social/discover/tags/iceformation?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#iceformation</a> <a href="https://pixelfed.social/discover/tags/clouds?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#clouds</a> <a href="https://pixelfed.social/discover/tags/lighthouse?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#lighthouse</a> <a href="https://pixelfed.social/discover/tags/boats?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#boats</a> <a href="https://pixelfed.social/discover/tags/lahti?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#lahti</a> <a href="https://pixelfed.social/discover/tags/vesijärvi?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#vesijärvi</a>
Nicole Sharp<p><strong>Winter in Chicago</strong></p><p>Fresh winter snow blankets Chicago in this satellite image. Over on Lake Michigan, ice dots the coastline out to about 20 kilometers from shore. Darker regions near land mark thinner ice being pushed outward by the wind. Further out, the ice appears white and may be thicker thanks to wind-driven ice piling up. (Image credit: M. Garrison; via <a href="https://earthobservatory.nasa.gov/images/153885/a-chill-over-chicagoland" rel="nofollow noopener noreferrer" target="_blank">NASA Earth Observatory</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/satellite-image/" target="_blank">#satelliteImage</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wind/" target="_blank">#wind</a></p>
Nicole Sharp<p><strong>Growing Ice</strong></p><p>While much attention is given to the summer loss of sea ice, the birth of new ice in the fall is also critical. Ice loss in the summer leaves oceans warmer and waves larger since wind can blow across longer open stretches. Those warmer waters and more dynamic waves affect how ice forms once autumn sets in. Higher waves mean that ice tends to form in “pancakes” like those seen here. Pancake ice is small — typically under 1 meter wide — and can only be observed from nearby, since they’re smaller than typical satellite resolution. Only once there’s enough pancake ice to dampen the waves will the pieces begin to cement together to form larger pieces that will form the basis of the year’s new ice. (Image credit: <a href="https://blogs.egu.eu/divisions/cr/2018/04/27/image-of-the-week-making-pancakes/" rel="nofollow noopener noreferrer" target="_blank">M. Smith</a>; see also <a href="https://eos.org/science-updates/the-balance-of-ice-waves-and-winds-in-the-arctic-autumn?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/pancake-ice/" target="_blank">#pancakeIce</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/sea-ice/" target="_blank">#seaIce</a></p>
Nicole Sharp<p><strong>Slipping Ice Streams</strong></p><p>The Northeast Greenland Ice Stream provides about 12% of the island’s annual ice discharge, and so far, models cannot accurately capture just how quickly the ice moves. Researchers deployed a fiber-optic cable into a borehole and set explosive charges on the ice to capture images of its interior through seismology. But <a href="https://doi.org/10.1126/science.adp8094" rel="nofollow noopener noreferrer" target="_blank">in the process</a>, they measured seismic events that <em>didn’t</em> correspond to the team’s charges.</p><p>Instead, the researchers identified the signals as small, cascading icequakes that were undetectable from the surface. The quakes were signs of ice locally sticking and slipping — a failure mode that current models don’t capture. Moreover, the team was able to isolate each event to distinct layers of the ice, all of which corresponded to ice strata affected by volcanic ash (note the dark streak in the ice core image above). Whenever a volcanic eruption spread ash on the ice, it created a weaker layer. Even after hundreds more meters of ice have formed atop these weaker layers, the ice still breaks first in those layers, which may account for the ice stream’s higher-than-predicted flow. (Image credit: L. Warzecha/LWimages; research credit: <a href="https://doi.org/10.1126/science.adp8094" rel="nofollow noopener noreferrer" target="_blank">A. Fichtner et al.</a>; via <a href="https://eos.org/articles/tiny-icequakes-ripple-through-greenlands-largest-ice-stream?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glacier/" target="_blank">#glacier</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glaciology/" target="_blank">#glaciology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice/" target="_blank">#ice</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/seismic-waves/" target="_blank">#seismicWaves</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/seismology/" target="_blank">#seismology</a></p>
SannaYou can find interesting things frozen inside an ice formation 👀<br> <br> <a href="https://pixelfed.social/discover/tags/photography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#photography</a> <a href="https://pixelfed.social/discover/tags/naturephotography?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#naturephotography</a> <a href="https://pixelfed.social/discover/tags/nature?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#nature</a> <a href="https://pixelfed.social/discover/tags/winter?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#winter</a> <a href="https://pixelfed.social/discover/tags/ice?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#ice</a> <a href="https://pixelfed.social/discover/tags/frozen?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#frozen</a> <a href="https://pixelfed.social/discover/tags/iceformation?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#iceformation</a> <a href="https://pixelfed.social/discover/tags/details?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#details</a> <a href="https://pixelfed.social/discover/tags/detailsthroughlens?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#detailsthroughlens</a> <a href="https://pixelfed.social/discover/tags/olympus?src=hash" class="u-url hashtag" rel="nofollow noopener noreferrer" target="_blank">#olympus</a>
Nicole Sharp<p><strong>Peering Inside a Hailstone</strong></p><p>In spring and summer, major thunderstorms can include dangerous and destructive hailstones. In Catalonia, a group of scientists <a href="https://doi.org/10.3389/fenvs.2024.1479824" rel="nofollow noopener noreferrer" target="_blank">collected hailstones</a> after a record-breaking 2022 storm, finding some as large as 12 centimeters across. Using a dentist’s CT scanner, they looked at the interior of the hailstones, uncovering layers that reveal how the hail grew. In the past, researchers have studied hail by slicing the ice; that method gives them only a single cross-section through the hailstone, which gets destroyed in the process. In contrast, a CT scan revealed the full interior of the ice. </p><p>The scientists found that, even though hail often appears spherical, the nucleus of the hail is not always located in the center. They saw that the hail grew in uneven layers that varied in density, depending on the storm conditions the hail experienced. To get to the enormous sizes seen here, hailstones have to travel up and down repeatedly through a storm, building up layer by layer. From the hail’s interior structure, the team could also tell what orientation the hail took its final fall in; the ice along the bottom of the hailstone was bubble-free, indicating that it collected as water drops hit the surface and froze. (Image credit: T. Ribas; research credit: <a href="https://doi.org/10.3389/fenvs.2024.1479824" rel="nofollow noopener noreferrer" target="_blank">C. Barqué et al.</a>; via <a href="https://www.newscientist.com/article/2459134-why-scientists-scanned-giant-hailstones-in-a-dentists-office/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">New Scientist</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/meteorology/" target="_blank">#meteorology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/thunderstorm/" target="_blank">#thunderstorm</a></p>
Nicole Sharp<p><strong>Ice Without Gravity</strong></p><p><a href="https://arstechnica.com/space/2024/10/nasa-astronaut-don-pettit-is-a-giant-nerd-and-were-all-luckier-for-it/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Astronaut Don Pettit</a> is back in space, and that means lots of awesome microgravity experiments. Here, he grew thin wafers of ice in microgravity in a -95 degree Celsius freezer. Then he took the ice wafers and photographed them between crossed polarizers, creating this colorful image. The colors highlight different crystal orientations within the ice and give us a hint about how the freezing front formed and expanded. I can’t wait to see more examples! (Image credit: <a href="https://www.instagram.com/p/DBlpO77RXM0/?img_index=1" rel="nofollow noopener noreferrer" target="_blank">D. Pettit/NASA</a>; via <a href="https://arstechnica.com/space/2024/10/nasa-astronaut-don-pettit-is-a-giant-nerd-and-were-all-luckier-for-it/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>; submitted by J. Shoer)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronaut/" target="_blank">#astronaut</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crystal-growth/" target="_blank">#crystalGrowth</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/microgravity/" target="_blank">#microgravity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/polarized-light/" target="_blank">#polarizedLight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>